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Research Drivers 

Dominant solution strategy for multiphysics, multiscale problems for 30+ years: 
1st order operator splitting, decoupled nonlinear solution methods, semi-
implicit and explicit time integration. 

This strategy is rapidly approaching a point of diminishing returns because 

1)  It lacks the stability properties for simulations over dynamic scales of interest  
2)  It often relies on heuristics to control the splitting errors 
3)  Is prone to non-intuitive instabilities 

Robust and efficient solution of multiphysics problems 

Compatible discretization of multiphysics problems 

1)  Lack of formal mathematical theory to guide the compatible discretization.  
2)  Physics components have disparate mathematical structures, which calls for mutually 

exclusive discretization and/or solver strategies. 
3)  Direct preservation of physical properties imposes severe grid/space constraints and  

tangles accuracy with the preservation of the properties. 

DOE Town Hall Report 

The advanced state of single physics discretizations contrasts sharply with the limited 
mathematical understanding of compatible discretizations for multiphysics problems: 
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Synthesis of Discretizations and Solvers 

€ 

∂tu = (L1 + L2)u

€ 

∂tu
h = (L1 + L2)

h uh

Traditional approaches: regularization, operator splitting …"

⇒  tunable parameters reduce robustness!
⇒  splitting errors reduce accuracy & stability!

€ 

(L1 + L2)
h ≠ L1

h + L2
hStable compatible methods may exist for L1 

and L2 but not for the composite problem: 

€ 

L1
h L2

h

€ 

(L1 + L2)
h( )−1 = ?Efficient solvers may exist for L1 and L2 

but not for the composite problem  

€ 

L1
h( )−1 L2

h( )−1

Typically, L1 and L2 have different 
mathematical structures  !

Node 
(Stokes) Face 

(Darcy) 

Challenges:"
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Preservation of Physical Properties 

Challenges:"

€ 

∂tu
h = Lhuh

Generally, discretization does not 
automatically preserve constraints, even 

with stabilization/regularization!

€ 

C ≤ Cuh ≤ C

  

€ 

Buh = b


In multiphysics codes this solution is input 
for another physics component!

Automatic preservation of maximum 
principle, local and global bounds, is 

required for robust, predictive simulations!

€ 

∂tu = Lu

€ 

C ≤ Cu ≤ C

  

€ 

Bu = b


Traditional approaches: limiters, “repair”, special grids, …"

⇒  limiters & repair entangle constraints & accuracy  and obscure sources of !
    discretization errors!
⇒  special grids reduce the scope of the methods"
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Optimization-based modeling (OBM) 

➪  Elimination of splitting errors: reformulation into an equivalent optimization problem 
➪  Elimination of limiters: lifts the associated restrictions on cell types & accuracy  
➪  Balancing of constraints: accuracy, mass conservation, monotonicity, variable bounds… 
➪  Generality with respect to problem discretization: applicable to FE, FV and FD  
     schemes as well as particle methods, on mixed n-D grids 
➪  Generality with respect to problem type:  elliptic, hyperbolic, … 
➪   Enable efficient reuse of existing codes: solvers, optimization tools,…  

Potential payoffs 

Our approach: a divide and conquer strategy 

Use optimization and control ideas to manage externally those objectives 
that are difficult (or impractical) to handle directly in the discretization process 
by manipulating the grid, the formulation, or the reconstruction.  
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Synthesis of discretizations and solvers as  
an optimization problem 

Objective Constraints 
Reconcile approximate solutions of the 
single physics operator equations 

Enforce constituent 
component physics 

References 

€ 

∂tu = (L1 + L2)u

  

€ 

minimize    1
2

u1
h − u2

h 2
+ε θ h 2( )

subject to   

γ1∂tu1
h = L1

hu1
h +θ h

γ 2∂tu2
h = L2

hu2
h −θ h

γ1 + γ 2 =1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 Reconcile fields 

 Physics operator #1 

 Physics operator #2 

 Split ratio 

  “Optimization-based approach for robust solution algorithms”,  Bochev, Ridzal, SINUM, 2009  
  “Additive operator decomposition”,  Bochev, Ridzal, Springer LNCS 5910, 2010  
  “Optimization-based domain decomposition”, M. Gunzburger, 1997 
  “Decomposition of everything”, J.L. Lyons, 2001  

 “Magic” Variable 



SAND 2012-2496 P 

Preservation of physical properties as  
an optimization problem 

  

€ 

∂tu = Lu

C ≤ Cu ≤ C


  

€ 

minimize    1
2
uh − uT

h 2

subject to   
C ≤ Cuh ≤ C

∂tuT
h = LhuT

h

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

  Match target field 

  Enforce constraints 

  Define target field 

  “Optimization based remap”, Bochev, Ridzal, Scovazzi, Shashkov JCP, 2011 
  “Optimization-based transport”, Parts 1-3, Bochev, Peterson, Ridzal, Young, LNCS 2012 

Objective Constraints 
Match a discrete target solution having the 
best possible accuracy 

Enforce lost physical 
properties 

References 
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Abstract theory of additive operator splitting 

  

€ 

min J(u1, u2 ) =
1
2
u1 − u2 U

2 subject to  
Q1 u1, v1( )− θ , v1( )V = f , v1 ∀v1 ∈ V

Q2 u2 , v2( ) + θ , v2( )V = 0 ∀v2 ∈ V

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

➪  u1,u2 – states 
➪  θ – virtual control 

Reformulation of                        as a constrained optimization problem 

€ 

Q u,v( ) = f , v

Theorem   
Assume that the additive split                                        is such that 

€ 

Q u,v( ) =Q1 u, v( ) +Q2 u, v( )

  

€ 

sup
v∈V

Qi u, v( )
v V

≥ γ i u U     sup
u∈U

Qi u, v( )
u U

> 0  and    Qi u, v( ) ≤ γ i u U ∀u ∈ U,∀v ∈ V

There exist unique optimal solution (u1,u2,θ) and                    where                       . 

€ 

u = u1 = u2

€ 

Q u,v( ) = f , v

➪  Optimization exposes the constituent components of the multiphysics operator  
➪  Optimization problem is well-posed without control penalty 
➪  As a result, original and reformulated problems are completely equivalent 

Notable facts 

There’s no splitting error! 

P. Bochev and D. Ridzal, An optimization-based approach for the design of robust solution algorithms.  SINUM 47/5, 2009  
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Equation  Compute  Solve  Properties 

Adjoint Concurrency: state and adjoint 
can be solved independently. 
Efficiency: application of HRED only 
requires inversion of operators for 
which fast solvers exist. 

State 

Application: Synthesis of Fast Solvers 

Assumptions 

€ 

Q u,v( ) =Q1 u, v( ) +Q2 u, v( ) Fast and efficient solvers exist for Q1 and Q2 

    

€ 

min J(  u 1,  u 2 ) =
1
2
 u 1 −
 u 2( )T U  u 1 −

 u 2( ) s.t.
Q1
 u 1 −V

 
θ =
 
f 

Q2
 u 2 +V

 
θ =
 
0 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Approach: solve the  equivalent reduced-space optimization  problem 

    

€ 

min JRED (
 
θ ) =

1
2
 
θ THRED

 
θ −
 
θ T
 
f RED

  

€ 

HRED
 
θ =
 
f RED

  

€ 

Q1
 x 1 =
 y 1, Q2

 x 2 =
 y 1  

€ 

 y 1 = V
 
θ 

  

€ 

 y 2 = U  x 1 −
 x 2( )   

€ 

Q1
T  x 3 =

 y 2 , Q2
T  x 4 = −

 y 2

  

€ 

HRED
 
θ = V  x 3 +

 x 4( )

Algorithm: 
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               = Diffusion              = -Diffusion 

€ 

b ≠ constElman/Silvester/Wathen:  “double-glazing”  

Study Fixed diffusion: 10-8 Fixed grid size: 128 
Solver    64 128 256 10-2 10-4 10-8 

Synthesized 114 97 77 62 97 97 
MLSGS 97 ST ST 11 ST ST 
MLILU 71 196 MX 9 96 196 

BAMG 72 457 MX 7 33 457 

Application to an advection-diffusion problem 

Synthesized solver 

BAMG= Boomer AMG from hypre  (LLNL )      ML = Trilinos AMG (Sandia) 

Essentially fixed cost  

Additive split γ = 1 

GMRES(200) MLSGS MLSGS 

  

€ 

HRED
 
θ =
 
f RED

€ 

Q1 Q1
T

€ 

Q2 Q2
T€ 

γ ∇uh ,∇vh( ) + b ⋅∇uh , vh + τb ⋅∇vh( )

€ 

(κ − γ ) ∇uh ,∇vh( )− κΔuh ,τb ⋅∇vh
h

€ 

Q2 u, v( )

€ 

Q1 u, v( )

 “Optimization-based approach for robust solution algorithms”,  Bochev, Ridzal, SINUM, 2009  
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Optimization-based monotone transport (OBT) 

Remap 

€ 

mi(t) = ρ(x)dV
κ i (t )
∫

€ 

mi(t +Δt) = mi(t)

€ 

d
dt
mi(t) =

d
dt

ρ(x)dV
κ i (t )
∫ = 0Mass is conserved in Lagrangian volumes:  

ρ 
ρ 

“new” 

ρ 
“old” 

t t+Δt t+Δt 
€ 

κ i (t )

€ 

κ i (t + Δt )

Transport = incremental mass/density remap 
Bochev, Ridzal, Young, Peterson. Optimization-based modeling with applications to transport.  
Parts 1-3, Springer Lecture Notes in Computer Science, LNCS 7116, 2012. 
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Mass/density remap as an optimization problem 

€ 

˜ m i
EX = mi

EX +δmi
EX ; δmi

EX = ρ( x)dV
˜ κ i
∫ − ρ( x)dV

κ i

∫

The exact mass on new cell     can be expressed in aggregate mass-transfer form: 

€ 

˜ κ i

€ 

δmi
h

Cell
∑ = 0 ⇒ ˜ m i

h

Cell
∑ = M

C1: Mass conservation. Requires a single linear constraint:  

  

€ 

˜ m i
h = mi

h +δmi
h ,   where     δmi

h = ρi
h ( x)dV

˜ κ i
∫ − ρi

h ( x)dV
κ i

∫ ≈ δmi
EX

Therefore, the mass on the new cell      can be approximated by  

€ 

˜ κ i

€ 

κ iC2: Linearity preservation.  Guaranteed if       is exact for linear functions on all     : 

€ 

ρi
h

Target (high-order) mass-transfers 

€ 

δmi
T = ρi

h ( x)dV
˜ κ i
∫ − ρi

h ( x)dV
κ i

∫

C3: Local bounds ⇒        
  

€ 

δ ˜ m i
min ≤ δmi

h

cell
∑ ≤δ ˜ m i

max i = 1,…, N Box constraints 
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Mass/density remap as a QP 

OBT = “singly linearly constrained QP with simple bounds” 

Existence of unique optimal solutions.  
The OBT feasible set is non-empty: given a density distribution there exists a set of 
aggregate mass transfers      , which satisfy the box constraints and sum up to zero.  

Preservation of linearity. 
Under mild conditions on the mesh motion, OBT preserves linear densities. 

Theorem.  

    

€ 

minimize
δmi

h
     δmi

h −δmi
T( )
2

Cell
∑    subject to

δ ˜ m i
min ≤ δmi

h ≤ δ ˜ m i
max i = 1,…, N

δmi
h

Cell
∑ = 0

 C3  

 C1  

 C2  

€ 

δmi
h
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Fast Optimization Algorithm for OBT 

    

€ 

minimize
δmi

h
          δmi

h −δmi
T( )
2

Cell
∑          subject to

δ ˜ m i
min ≤ δmi

h ≤ δ ˜ m i
max ; i = 1,…, N   and   δmi

h

Cell
∑ = 0

€ 

L(δm,λ,µ1,µ2 ) = δmi
h −δmi

T( )
2

Cell
∑ − λ δmi

h

Cell
∑ − µ1, i (δmi

h −δ ˜ m i
min )

Cell
∑ − µ2, i (δmi

h −δ ˜ m i
max )

Cell
∑

  

€ 

δmi
h = δmi

T + λ +µ1, i −µ2, i

δ ˜ m i
min ≤ δmi

h ≤ δ ˜ m i
max

µ1, i ≥ 0, µ 2, i ≥ 0

µ1, i (δmi
h −δ ˜ m i

min ) = 0,

µ2, i (δmi
h −δ ˜ m i

max ) = 0

⎧ 

⎨ 

⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 

and δmi
h

Cell
∑ = 0

The Lagrangian 

The Karush-Kuhn-Tucker (KKT) conditions 

Key property of singly linearly constrained QP with simple bounds: 

Without the equality constraint the QP is 
fully separable into N one-dimensional 

QPs with simple bounds 

Without the equality constraint the KKT 
conditions are fully separable and can be 
solved in parallel for any fixed value of λ. 
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Fast Optimization Algorithm for OBT 

  

€ 

δmi
h = δmi

T + λ µ1, i = 0 µ 2, i = 0                              if   δ ˜ m i
min ≤ δmi

T + λ ≤ δ ˜ m i
max

δmi
h = δ ˜ m i

min µ 2, i = 0 µ1, i = δmi
h −δmi

T − λ           if   δ ˜ m i
min ≥ δmi

T + λ

δmi
h = δ ˜ m i

max µ1, i = 0 µ2, i = δmi
T −δmi

h + λ           if               δmi
T + λ ≥ δ ˜ m i

max

Step 1: solve for λ fixed 

€ 

δmi
h (λ ) = median(δ ˜ m i

min ,δmi
T + λ,δ ˜ m i

max ); i = 1,...., N

Step 2: adjust λ in an outer iteration to satisfy the single equality constraint 

  

€ 

Solve δmi
h (λ)

Cell
∑ = 0 piecewise linear, monotonically increasing 

function of single scalar variable λ. 

-  Can solve to machine precision by a simple secant method  
-  Globalization is unnecessary because λ0=0 is an excellent initial guess:  

€ 

δmi
h (λ0 ) = median(δ ˜ m i

min ,δmi
T ,δ ˜ m i

max ); i = 1,...., N

-                   solves the QP without the equality constraint, i.e., “almost” a solution 
-   Locality                      barely violates the mass conservation constraint 

€ 

δmi
h (λ0 )

€ 

⇒δmi
h (λ0 )
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OBT with adaptive targets 
OBT always finds the best possible (optimal) solution w.r.t. the targets 

  We can improve OBR/T solution by using targets, which adapt to local solution features    

OBR feasible set 

Adaptive target flux Linear target flux 

Exact solution 

Adaptive OBR solution OBR solution 

unfeasible 

Satisfy local bounds 

Because OBR/OBT completely separates  reconstruction and bounds enforcement, 
Target fluxes can adapt to problem features without concern for the  
bounds – the QP constraints will take care to enforce the bounds later! 

Adaptive target definition 
  Use residual information to modify targets depending on local solution features 
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OBT with adaptive targets: cylinder 

Initial OBT OBT-A 

Rotating cylinder 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=45 
Time steps:  2πN    282 
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OBT with adaptive targets: combo 

Initial 

OBT 

OBT-A 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=100 
Time steps:  2πN    628 CFL < 1 

OBT 

This example combines “smooth” and “sharp” features! 
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OBT is as efficient as explicit transport 

Cells Time steps FCR (sec) Van Leer  OBT  OBT/FCR 
64x64 400 4.59 4.50 4.92 1.1 
128x128 810 44.64 47.25 48.62 1.1 
256x256 1,610 387.88 393.64 403.23 1.0 
512x512 3,220 5,715.08 5,804.66 5655.06 0.9 

“C
on

e”
 

Cells Time steps FCR (sec) Van Leer  OBT OBT/FCR 
64x64 400 4.51 4.55 4.98 1.1 
128x128 810 47.60 48.35 48.78 1.0 
256x256 1,610 390.47 399.15 405.92 1.0 
512x512 3,220 5802.05 5804.66 5,655.11 0.9 

“C
om

bo
” 

Matlab wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro 

FCR = Flux Corrected Remap, Liska, et al, JCP 2010 
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Yet, OBT has superior robustness and accuracy 

C=5 C=6 C=7 C=14 C=15 C=16 C=100 

OBT ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

FCR ✔ ✔ ✔ ✗ ✗ ✗ ✗ 

Preservation of monotonicity 

C=3 C=4 C=5 C=15 C=16 C=100 

OBT ✔ ✔ ✔ ✔ ✔ ✔ 

FCR ✔ ✗ ✗ ✗ ✗ ✗ 

Preservation of linearity 

Mesh motion: 
“Repeated repair” 

Sine & repeated repair FCR OBT 
#Cells #remaps L1 error L1 rate L1 error L1 rate 

128x128 640 2.81E-04 - 2.77E-04 - 

256x256 1280 9.23E-05 1.61 6.82E-05 2.04 
512x512 2560 3.65E-05 1.47 1.69E-05 2.03 
1024x1024 5120 1.69E-05 1.35 4.18E-06 2.00 

Rates of convergence 
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Summary 
A divide and conquer strategy: we use optimization ideas to separate 

discretization from tasks that are difficult to accomplish directly 

Abstract theory for optimization-based additive operator splitting 
  Increases concurrency by exposing constituent physics components  
  Remove order & stability limitations (no splitting error) 
  Rigorous mathematical foundations inherited from rich optimization theory 
  Enables reuse of software components through synthesis of solvers and discretizations –  
   compatible with the PETSc strategy for “composable extreme-scale solvers” 

Optimization-based conservative and monotone transport (OBT) 
  Completely separates accuracy from the enforcement of bounds:  

  sources of error traceable! 
  targets can be adapted to local solution features 

  OBT is global QP: yields the best possible, w.r.t. the objective, solution 

  Increases robustness: can run at higher CFL numbers 
  Increases accuracy: remains 2nd order under most challenging mesh motions 

  Yet, resulting QP can be solved efficiently: cost = cost of explicit methods 


